Search results
Results from the WOW.Com Content Network
The divide-and-conquer paradigm is often used to find an optimal solution of a problem. Its basic idea is to decompose a given problem into two or more similar, but simpler, subproblems, to solve them in turn, and to compose their solutions to solve the given problem. Problems of sufficient simplicity are solved directly.
There exist inputs to the travelling salesman problem that cause the Christofides algorithm to find a solution whose approximation ratio is arbitrarily close to 3/2. One such class of inputs are formed by a path of n vertices, with the path edges having weight 1 , together with a set of edges connecting vertices two steps apart in the path with ...
A Sudoku may also be modelled as a constraint satisfaction problem. In his paper Sudoku as a Constraint Problem, [14] Helmut Simonis describes many reasoning algorithms based on constraints which can be applied to model and solve problems. Some constraint solvers include a method to model and solve Sudokus, and a program may require fewer than ...
A fifth-generation programming language (5GL) is a high-level programming language based on problem-solving using constraints given to the program, rather than using an algorithm written by a programmer. [1] Most constraint-based and logic programming languages and some other declarative languages are fifth-generation languages.
It is named after the ostrich effect which is defined as "to stick one's head in the sand and pretend there is no problem". It is used when it appears the situation may be more cost-effectively managed by allowing the problem to continue to occur rather than to attempt its prevention.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
Problem 2. Find the path of minimum total length between two given nodes P {\displaystyle P} and Q {\displaystyle Q} . We use the fact that, if R {\displaystyle R} is a node on the minimal path from P {\displaystyle P} to Q {\displaystyle Q} , knowledge of the latter implies the knowledge of the minimal path from P {\displaystyle P} to R ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23