Search results
Results from the WOW.Com Content Network
The software to generate the tables is so small and fast that it is usually faster to compute them on program startup than to load precomputed tables from storage. One popular technique is to use the bit-at-a-time code 256 times to generate the CRCs of the 256 possible 8-bit bytes.
The table below lists only the polynomials of the various algorithms in use. Variations of a particular protocol can impose pre-inversion, post-inversion and reversed bit ordering as described above. For example, the CRC32 used in Gzip and Bzip2 use the same polynomial, but Gzip employs reversed bit ordering, while Bzip2 does not. [ 14 ]
XOR/table Paul Hsieh's SuperFastHash [1] 32 bits Buzhash: variable XOR/table Fowler–Noll–Vo hash function (FNV Hash) 32, 64, 128, 256, 512, or 1024 bits xor/product or product/XOR Jenkins hash function: 32 or 64 bits XOR/addition Bernstein's hash djb2 [2] 32 or 64 bits shift/add or mult/add or shift/add/xor or mult/xor PJW hash / Elf Hash ...
In the table below, the column "ISO 8859-1" shows how the file signature appears when interpreted as text in the common ISO 8859-1 encoding, with unprintable characters represented as the control code abbreviation or symbol, or codepage 1252 character where available, or a box otherwise. In some cases the space character is shown as ␠.
Parity bits are generally applied to the smallest units of a communication protocol, typically 8-bit octets (bytes), although they can also be applied separately to an entire message string of bits. The parity bit ensures that the total number of 1-bits in the string is even or odd. [1]
This table specifies the input permutation on a 64-bit block. The meaning is as follows: the first bit of the output is taken from the 58th bit of the input; the second bit from the 50th bit, and so on, with the last bit of the output taken from the 7th bit of the input.
The byte pair "aa" occurs most often, so it will be replaced by a byte that is not used in the data, such as "Z". Now there is the following data and replacement table: ZabdZabac Z=aa Then the process is repeated with byte pair "ab", replacing it with "Y": ZYdZYac Y=ab Z=aa
For the actual calculati a 48-byte auxiliary block and a 256-byte S-table are used. The constants were generated by shuffling the integers 0 through 255 using a variant of Durstenfeld's algorithm with a pseudorandom number generator based on decimal digits of π (pi) [3] [5] (see nothing up my sleeve number). The algorithm runs through a loop ...