Search results
Results from the WOW.Com Content Network
The SI unit of molar absorption coefficient is the square metre per mole (m 2 /mol), but in practice, quantities are usually expressed in terms of M −1 ⋅cm −1 or L⋅mol −1 ⋅cm −1 (the latter two units are both equal to 0.1 m 2 /mol).
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
Variable pathlength absorption spectroscopy uses a determined slope to calculate concentration. As stated above this is a product of the molar absorptivity and the concentration. Since the actual absorbance value is taken at many data points at equal intervals, background subtraction is generally unnecessary.
In science, absorptivity may refer to: Molar absorptivity, in chemistry, a measurement of how strongly a chemical species absorbs light at a given wavelength; Absorptance, in physics, the fraction of radiation absorbed at a given wavelength; Emissivity § Absorptivity, information on the radiometrical aspect
Extinction coefficient refers to several different measures of the absorption of light in a medium: Attenuation coefficient, sometimes called "extinction coefficient" in meteorology or climatology Mass extinction coefficient, how strongly a substance absorbs light at a given wavelength, per mass density
However, there is also a specific, quantitative definition of "opacity", used in astronomy, plasma physics, and other fields, given here. In this use, "opacity" is another term for the mass attenuation coefficient (or, depending on context, mass absorption coefficient , the difference is described here ) κ ν {\displaystyle \kappa _{\nu }} at ...
Beer's law states that a beam of visible light passing through a chemical solution of fixed geometry experiences absorption proportional to the solute concentration. Other applications appear in physical optics , where it quantifies astronomical extinction and the absorption of photons , neutrons , or rarefied gases .
ε is the molar attenuation coefficient of that material, and; c(z) is the molar concentration of that material at z. If c(z) is uniform along the path, the relation becomes =. The use of the term "molar absorptivity" for molar attenuation coefficient is discouraged. [1]