Search results
Results from the WOW.Com Content Network
An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Decision trees used in data mining are of two main types: Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs. Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
Classification algorithms (3 C, 85 P) Cluster analysis algorithms (42 P) Pages in category "Data mining algorithms" The following 6 pages are in this category, out of ...
A common practice in data mining is to classify, to look at the attributes of an object or situation and make a guess at what category the observed item belongs to.As new evidence is examined (typically by feeding a training set to a learning algorithm), these guesses are refined and improved.
Relational data mining is the data mining technique for relational databases. [1] Unlike traditional data mining algorithms, which look for patterns in a single table (propositional patterns), relational data mining algorithms look for patterns among multiple tables (relational patterns). For most types of propositional patterns, there are ...
Multi-label classification; Multiclass classification; Multifactor dimensionality reduction; Multilayer perceptron; Multinomial logistic regression; Multiple discriminant analysis; Multispectral pattern recognition
An example calibration plot. Calibration can be assessed using a calibration plot (also called a reliability diagram). [3] [5] A calibration plot shows the proportion of items in each class for bands of predicted probability or score (such as a distorted probability distribution or the "signed distance to the hyperplane" in a support vector ...