enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    We write the eigenvalue equation in position coordinates, ^ = = recalling that ^ simply multiplies the wave-functions by the function , in the position representation. Since the function x {\displaystyle \mathrm {x} } is variable while x 0 {\displaystyle x_{0}} is a constant, ψ {\displaystyle \psi } must be zero everywhere except at the point ...

  3. Position and momentum spaces - Wikipedia

    en.wikipedia.org/wiki/Position_and_momentum_spaces

    Mathematically, the duality between position and momentum is an example of Pontryagin duality. In particular, if a function is given in position space, f(r), then its Fourier transform obtains the function in momentum space, φ(p). Conversely, the inverse Fourier transform of a momentum space function is a position space function.

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator.

  6. Momentum operator - Wikipedia

    en.wikipedia.org/wiki/Momentum_operator

    For the case of one particle in one spatial dimension, the definition is: ^ = where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative (denoted by /) is used instead of a total derivative (d/dx) since the wave function is also a function of time. The "hat" indicates an operator.

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  8. Wave function - Wikipedia

    en.wikipedia.org/wiki/Wave_function

    The term "spin function" instead of "wave function" is used by some authors. This contrasts the solutions to position space wave functions, the position coordinates being continuous degrees of freedom, because then the Schrödinger equation does take the form of a wave equation.

  9. Position (geometry) - Wikipedia

    en.wikipedia.org/wiki/Position_(geometry)

    Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a. For a position vector r that is a function of time t, the time derivatives can be computed with respect to t. These derivatives have common utility in the study of kinematics, control theory, engineering and other sciences. Velocity