enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the constraint.

  3. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...

  4. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    A step of the Frank–Wolfe algorithm Initialization: Let , and let be any point in . Step 1. Direction-finding subproblem: Find solving Minimize () Subject to (Interpretation: Minimize the linear approximation of the problem given by the first-order Taylor approximation of around constrained to stay within .)

  5. Fritz John conditions - Wikipedia

    en.wikipedia.org/wiki/Fritz_John_conditions

    where ƒ is the function to be minimized, the inequality constraints and the equality constraints, and where, respectively, , and are the indices sets of inactive, active and equality constraints and is an optimal solution of , then there exists a non-zero vector = [,,, …,] such that:

  6. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  7. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.

  8. Tuple relational calculus - Wikipedia

    en.wikipedia.org/wiki/Tuple_relational_calculus

    ∀ t : {author, title, subject} ( ¬ ( Book(t) ∧ t.author = "C. J. Date" ∧ ¬ ( t.subject = "relational model"))) Note that the last formula states that all books that are written by C. J. Date have as their subject the relational model. As usual we omit brackets if this causes no ambiguity about the semantics of the formula.

  9. Reduced cost - Wikipedia

    en.wikipedia.org/wiki/Reduced_cost

    Given a system minimize subject to ,, the reduced cost vector can be computed as , where is the dual cost vector. It follows directly that for a minimization problem, any non- basic variables at their lower bounds with strictly negative reduced costs are eligible to enter that basis, while any basic variables must have a reduced cost that is ...