Search results
Results from the WOW.Com Content Network
In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination). Wronskian — the determinant of a matrix of functions and their derivatives such that row n is the (n−1) th derivative of row one.
In pharmacology, clearance is a pharmacokinetic parameter representing the efficiency of drug elimination. This is the rate of elimination of a substance divided by its concentration. [ 1 ] The parameter also indicates the theoretical volume of plasma from which a substance would be completely removed per unit time.
During execution of the Bareiss algorithm, every integer that is computed is the determinant of a submatrix of the input matrix. This allows, using the Hadamard inequality, to bound the size of these integers. Otherwise, the Bareiss algorithm may be viewed as a variant of Gaussian elimination and needs roughly the same number of arithmetic ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Duplication, or doubling, multiplication by 2; Duplication matrix, a linear transformation dealing with half-vectorization; Doubling the cube, a problem in geometry also known as duplication of the cube; A type of multiplication theorem called the Legendre duplication formula or simply "duplication formula"
In mathematics, the Bruhat decomposition (introduced by François Bruhat for classical groups and by Claude Chevalley in general) = of certain algebraic groups = into cells can be regarded as a general expression of the principle of Gauss–Jordan elimination, which generically writes a matrix as a product of an upper triangular and lower triangular matrices—but with exceptional cases.