Search results
Results from the WOW.Com Content Network
The molar mass is defined as the mass of a given substance divided by the amount of the substance, and is expressed in grams per mol (g/mol). That makes the molar mass an average of many particles or molecules (potentially containing different isotopes), and the molecular mass the mass of one specific particle or molecule. The molar mass is ...
The diffusion in the bulk fluide compensate the utilisation of B at the surface of the catalyst. k g is the mass transfer coefficient. Ṅ diff,B =k g (y B,1-y B,2) Although the mixture is stationary due to the molar flow rate and velocity being zero, the net mass flow rate of the mixture is not equal to zero unless the molar mass of A is equal ...
(mol/s)/(m 2 ·mol/m 3) = m/s Note, the units will vary based upon which units the driving force is expressed in. The driving force shown here as ' Δ c A {\displaystyle {\Delta c_{A}}} ' is expressed in units of moles per unit of volume, but in some cases the driving force is represented by other measures of concentration with different units.
The molar mass of atoms of an element is given by the relative atomic mass of the element multiplied by the molar mass constant, M u ≈ 1.000 000 × 10 −3 kg/mol ≈ 1 g/mol. For normal samples from Earth with typical isotope composition, the atomic weight can be approximated by the standard atomic weight [ 2 ] or the conventional atomic weight.
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.
The high-pressure liquid enters a boiler, where it is heated at constant pressure by an external heat source to become a dry saturated vapour. The input energy required can be easily calculated graphically, using an enthalpy–entropy chart (h–s chart, or Mollier diagram), or numerically, using steam tables or software. Process 3–4
The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K). Standard states are defined for various types of substances. For a gas, it is the hypothetical state the gas would assume if it obeyed the ideal gas equation at a pressure of 1 bar.
A diatomic molecular orbital diagram is used to understand the bonding of a diatomic molecule. MO diagrams can be used to deduce magnetic properties of a molecule and how they change with ionization. They also give insight to the bond order of the molecule, how many bonds are shared between the two atoms. [12]