Search results
Results from the WOW.Com Content Network
In logic and mathematics, statements and are said to be logically equivalent if they have the same truth value in every model. [1] The logical equivalence of p {\displaystyle p} and q {\displaystyle q} is sometimes expressed as p ≡ q {\displaystyle p\equiv q} , p :: q {\displaystyle p::q} , E p q {\displaystyle {\textsf {E}}pq} , or p q ...
The corresponding logical symbols are "", "", [6] and , [10] and sometimes "iff".These are usually treated as equivalent. However, some texts of mathematical logic (particularly those on first-order logic, rather than propositional logic) make a distinction between these, in which the first, ↔, is used as a symbol in logic formulas, while ⇔ is used in reasoning about those logic formulas ...
Venn diagram of (true part in red) In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement "if and only if" (often abbreviated as "iff " [1]), where is known as the antecedent, and the consequent.
Using our example, this is rendered as "If Socrates is not human, then Socrates is not a man." This statement is said to be contraposed to the original and is logically equivalent to it. Due to their logical equivalence, stating one effectively states the other; when one is true, the other is also true, and when one is false, the other is also ...
A logical principle that states that a conditional statement is logically equivalent to its contrapositive, transforming "If P, then Q" into "If not Q, then not P". contrapositive The statement resulting from swapping the antecedent and consequent of a conditional statement and negating both, maintaining logical equivalence. contrary
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not-or and that either form can replace the other in logical proofs.
The inverse and the converse of a conditional are logically equivalent to each other, just as the conditional and its contrapositive are logically equivalent to each other. [1] But the inverse of a conditional cannot be inferred from the conditional itself (e.g., the conditional might be true while its inverse might be false [2]). For example ...
For example, the sentence "'Snow is white' is true" becomes materially equivalent with the sentence "snow is white", i.e. 'snow is white' is true if and only if snow is white. Said again, a sentence of the form "A" is true if and only if A is true. The truth of more complex sentences is defined in terms of the components of the sentence: