Search results
Results from the WOW.Com Content Network
For a continuous time Markov chain (CTMC) with transition rate matrix, if can be found such that for every pair of states and = holds, then by summing over , the global balance equations are satisfied and is the stationary distribution of the process. [5]
In probability theory, the matrix analytic method is a technique to compute the stationary probability distribution of a Markov chain which has a repeating structure (after some point) and a state space which grows unboundedly in no more than one dimension.
We say is Markov with initial distribution and rate matrix to mean: the trajectories of are almost surely right continuous, let be a modification of to have (everywhere) right-continuous trajectories, (()) = + almost surely (note to experts: this condition says is non-explosive), the state sequence (()) is a discrete-time Markov chain with ...
If a Markov chain has a stationary distribution, then it can be converted to a measure-preserving dynamical system: Let the probability space be =, where is the set of all states for the Markov chain. Let the sigma-algebra on the probability space be generated by the cylinder sets.
Stationary distribution may refer to: . Discrete-time Markov chain § Stationary distributions and continuous-time Markov chain § Stationary distribution, a special distribution for a Markov chain such that if the chain starts with its stationary distribution, the marginal distribution of all states at any time will always be the stationary distribution.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
Among Markov chain Monte Carlo (MCMC) algorithms, coupling from the past is a method for sampling from the stationary distribution of a Markov chain. Contrary to many MCMC algorithms, coupling from the past gives in principle a perfect sample from the stationary distribution. It was invented by James Propp and David Wilson in 1996.
In probability theory, Kelly's lemma states that for a stationary continuous-time Markov chain, a process defined as the time-reversed process has the same stationary distribution as the forward-time process. [1] The theorem is named after Frank Kelly. [2] [3] [4] [5]