Search results
Results from the WOW.Com Content Network
The max-flow min-cut theorem is a special case of the strong duality theorem: flow-maximization is the primal LP, and cut-minimization is the dual LP. See Max-flow min-cut theorem#Linear program formulation. Other graph-related theorems can be proved using the strong duality theorem, in particular, Konig's theorem. [9]
In mathematics, a duality, generally speaking, translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.
The idea of mathematical duality was first noticed as projective duality. There it appears as the idea of interchanging dimension k and codimension k+1 in propositions of projective geometry. A large number of duality theories have now been created in mathematics, ranging as far as optimization theory and theoretical physics.
For example, the dual of (A & B ∨ C) would be (¬A ∨ ¬B & ¬C). The dual of a formula φ is notated as φ*. The Duality Principle states that in classical propositional logic, any sentence is equivalent to the negation of its dual. [4] [7] Duality Principle: For all φ, we have that φ = ¬(φ*). [4] [7] Proof: By induction on complexity ...
The duality gap is zero if and only if strong duality holds. Otherwise the gap is strictly positive and weak duality holds. [5] In computational optimization, another "duality gap" is often reported, which is the difference in value between any dual solution and the value of a feasible but suboptimal iterate for the primal problem.
A duality that respects the orderings in question is known as a Galois connection. An example is the standard duality in Galois theory mentioned in the introduction: a bigger field extension corresponds—under the mapping that assigns to any extension L ⊃ K (inside some fixed bigger field Ω) the Galois group Gal (Ω / L) —to a smaller ...
Ronald William Shephard (November 22, 1912 – July 22, 1982) was professor of engineering science at the University of California, Berkeley. [1]He is best known for two results in economics, now known as Shephard's lemma and the Shephard duality theorem.
In mathematics, Artin–Verdier duality is a duality theorem for constructible abelian sheaves over the spectrum of a ring of algebraic numbers, introduced by Michael Artin and Jean-Louis Verdier (), that generalizes Tate duality.