Search results
Results from the WOW.Com Content Network
The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square. [8] If two lines parallel to sides of a parallelogram are constructed concurrent to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area. [8]
For the general quadrilateral (with four sides not necessarily equal) Euler's quadrilateral theorem states + + + = + +, where is the length of the line segment joining the midpoints of the diagonals. It can be seen from the diagram that x = 0 {\displaystyle x=0} for a parallelogram, and so the general formula simplifies to the parallelogram law.
A rhombus therefore has all of the properties of a parallelogram: for example, opposite sides are parallel; adjacent angles are supplementary; the two diagonals bisect one another; any line through the midpoint bisects the area; and the sum of the squares of the sides equals the sum of the squares of the diagonals (the parallelogram law).
The theorem of the gnomon can be used to construct a new parallelogram or rectangle of equal area to a given parallelogram or rectangle by the means of straightedge and compass constructions. This also allows the representation of a division of two numbers in geometrical terms, an important feature to reformulate geometrical problems in ...
For squares on two sides of an arbitrary triangle it yields a parallelogram of equal area over the third side and if the two sides are the legs of a right angle the parallelogram over the third side will be square as well. For a right-angled triangle, two parallelograms attached to the legs of the right angle yield a rectangle of equal area on ...
Note that a non-rectangular parallelogram is not an isosceles trapezoid because of the second condition, or because it has no line of symmetry. In any isosceles trapezoid, two opposite sides (the bases) are parallel, and the two other sides (the legs) are of equal length (properties shared with the parallelogram), and the diagonals have equal ...
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into () or 1 / 2 m(m − 1) parallelograms. These tilings are contained as subsets of vertices, edges and faces in orthogonal projections m-cubes. [7]
Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, [1] but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. [2] [3] A kite may also be called a dart, [4] particularly if it is ...