Search results
Results from the WOW.Com Content Network
Inner ear regeneration is the biological process by which the hair cells and supporting cells (i.e. Hensen's cells and Deiters cells) of the ear proliferate (cell proliferation) and regrow after hair cell injury. This process depends on communication between supporting cells and the brain.
It is possible that the high blood glucose levels associated with diabetes cause damage to the small blood vessels in the inner ear, similar to the way in which diabetes can damage the eyes and the kidneys. Similar studies have shown a possible link between that hearing loss and neuropathy (nerve damage). Tumor
Auditory neuropathy (AN) is a hearing disorder in which the outer hair cells of the cochlea are present and functional, but sound information is not transmitted sufficiently by the auditory nerve to the brain. The cause may be several dysfunctions of the inner hair cells of the cochlea or spiral ganglion neuron levels. [1]
This is called noise-induced hearing loss (NIHL), and it happens when the tiny hair cells in your inner ear are damaged. These hair cells cannot grow back or be repaired, so once they are gone ...
Sound above a certain decibel level can cause permanent damage to inner ear stereocilia. New research has shown that the damage can possibly be reversed if we can repair or recreate some of the proteins in the stereocilia. In this study, scientists used zebrafish to examine the motion of proteins within live ear cells using a confocal ...
The vestibulocochlear nerve is accompanied by the labyrinthine artery, which usually branches off from the anterior inferior cerebellar artery at the cerebellopontine angle, and then goes with the 7th nerve through the internal acoustic meatus to the internal ear. The cochlear nerve travels away from the cochlea of the inner ear where it starts ...
For premium support please call: 800-290-4726 more ways to reach us
The inner ear houses the apparatus necessary to change the vibrations transmitted from the outside world via the middle ear into signals passed along the vestibulocochlear nerve to the brain. The hollow channels of the inner ear are filled with liquid, and contain a sensory epithelium that is studded with hair cells. The microscopic "hairs" of ...