enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vacuum permeability - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permeability

    The change of name had been made because μ 0 was a defined value, and was not the result of experimental measurement (see below). In the new SI system, the permeability of vacuum no longer has a defined value, but is a measured quantity, with an uncertainty related to that of the (measured) dimensionless fine structure constant.

  3. Permeability (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Permeability...

    In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.

  4. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.

  5. Vacuum permittivity - Wikipedia

    en.wikipedia.org/wiki/Vacuum_permittivity

    Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space , the electric constant , or the distributed capacitance of the vacuum.

  6. Impedance of free space - Wikipedia

    en.wikipedia.org/wiki/Impedance_of_free_space

    Its presently accepted value is [1] Z 0 = 376.730 313 412 (59) Ω, where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is, the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ 0 and the speed of light in vacuum c 0.

  7. Magnetic susceptibility - Wikipedia

    en.wikipedia.org/wiki/Magnetic_susceptibility

    where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).

  8. Magnetic pressure - Wikipedia

    en.wikipedia.org/wiki/Magnetic_pressure

    where is the vacuum permeability. Any magnetic field has an associated magnetic pressure contained by the boundary conditions on the field. It is identical to any other physical pressure except that it is carried by the magnetic field rather than (in the case of a gas ) by the kinetic energy of gas molecules.

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    See below for a detailed description of the differences between the microscopic equations, dealing with total charge and current including material contributions, useful in air/vacuum; [note 6] and the macroscopic equations, dealing with free charge and current, practical to use within materials.