Search results
Results from the WOW.Com Content Network
In statistics, Tukey's test of additivity, [1] named for John Tukey, is an approach used in two-way ANOVA (regression analysis involving two qualitative factors) to assess whether the factor variables (categorical variables) are additively related to the expected value of the response variable. It can be applied when there are no replicated ...
In statistics, the two-way analysis of variance (ANOVA) is an extension of the one-way ANOVA that examines the influence of two different categorical independent variables on one continuous dependent variable. The two-way ANOVA not only aims at assessing the main effect of each independent variable but also if there is any interaction between them.
When there are only two means to compare, the t-test and the ANOVA F-test are equivalent; the relation between ANOVA and t is given by F = t 2. Factorial ANOVA is used when there is more than one factor. Repeated measures ANOVA is used when the same subjects are used for each factor (e.g., in a longitudinal study).
Andy Field (2009) [1] provided an example of a mixed-design ANOVA in which he wants to investigate whether personality or attractiveness is the most important quality for individuals seeking a partner. In his example, there is a speed dating event set up in which there are two sets of what he terms "stooge dates": a set of males and a set of ...
A simple setting in which interactions can arise is a two-factor experiment analyzed using Analysis of Variance (ANOVA). Suppose we have two binary factors A and B.For example, these factors might indicate whether either of two treatments were administered to a patient, with the treatments applied either singly, or in combination.
The parametric alternative to the Scheirer–Ray–Hare test is multi-factorial ANOVA, which requires a normal distribution of data within the samples. The Kruskal–Wallis test, from which the Scheirer–Ray–Hare test is derived, serves in contrast to this to investigate the influence of exactly one factor on the measured variable.
The one factor model can be thought of as a generalization of the two sample t-test. That is, the two sample t-test is a test of the hypothesis that two population means are equal. The one factor ANOVA tests the hypothesis that k population means are equal. The standard ANOVA assumes that the errors (i.e., residuals) are normally distributed.
Statistical tests (e.g. t-test and the related ANOVA family of tests) rely on appropriate replication to estimate statistical significance. Tests based on the t and F distributions assume homogeneous, normal, and independent errors. Correlated errors can lead to false precision and p-values that are too small. [6]