enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

  3. Refractive index and extinction coefficient of thin film ...

    en.wikipedia.org/wiki/Refractive_index_and...

    In this example, the reflectance spectrum of the poly-silicon was measured on a blanket area containing the poly-silicon, from which its n and k spectra were determined in accordance with the methodology described in this article that uses the Forouhi–Bloomer dispersion equations. Fixed tables of n and k values were used for the SiO 2 and Si ...

  4. Forouhi–Bloomer model - Wikipedia

    en.wikipedia.org/wiki/Forouhi–Bloomer_model

    These parameters approximate amorphous silicon. [1] The Forouhi–Bloomer model is a mathematical formula for the frequency dependence of the complex-valued refractive index. The model can be used to fit the refractive index of amorphous and crystalline semiconductor and dielectric materials at energies near and greater than their optical band gap.

  5. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index of materials varies with the wavelength (and frequency) of light. [27] This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors. [28] As the refractive index varies with wavelength, so will the refraction angle as light goes from one material to another.

  6. Tauc–Lorentz model - Wikipedia

    en.wikipedia.org/wiki/Tauc–Lorentz_model

    The model has been used to fit the complex refractive index of amorphous semiconductor materials at frequencies greater than their optical band gap. The dispersion relation bears the names of Jan Tauc and Hendrik Lorentz, whose previous works [1] were combined by G. E. Jellison and F. A. Modine to create the model.

  7. Amorphous silicon - Wikipedia

    en.wikipedia.org/wiki/Amorphous_silicon

    Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs.. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films onto a variety of flexible substrates, such as glass, metal and plastic.

  8. High-refractive-index polymer - Wikipedia

    en.wikipedia.org/wiki/High-refractive-index_polymer

    A typical polymer has a refractive index of 1.30–1.70, but a higher refractive index is often required for specific applications. The refractive index is related to the molar refractivity, structure and weight of the monomer. In general, high molar refractivity and low molar volumes increase the refractive index of the polymer. [1]

  9. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    The most general form of Cauchy's equation is = + + +,where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.