enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  3. Boundary conditions in computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    These conditions are used when we don’t know the exact details of flow distribution but boundary values of pressure are known For example: external flows around objects, internal flows with multiple outlets, buoyancy-driven flows, free surface flows, etc. The pressure corrections are taken zero at the nodes.

  4. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The flow is axisymmetric ( ⁠ ∂... / ∂θ ⁠ = 0). The flow is fully developed ( ⁠ ∂u x / ∂x ⁠ = 0). Here however, this can be proved via mass conservation, and the above assumptions. Then the angular equation in the momentum equations and the continuity equation are identically satisfied.

  5. Computational fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Computational_fluid_dynamics

    Assume that the flow is steady, two-dimensional, and fully developed (i.e., the velocity profile does not change along the streamwise direction). [45] Note that this widely-used fully-developed assumption can be inadequate in some instances, such as some compressible, microchannel flows, in which case it can be supplanted by a locally fully ...

  6. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  7. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For flow in a pipe of diameter D, experimental observations show that for "fully developed" flow, [n 2] laminar flow occurs when Re D < 2300 and turbulent flow occurs when Re D > 2900. [ 13 ] [ 14 ] At the lower end of this range, a continuous turbulent-flow will form, but only at a very long distance from the inlet of the pipe.

  8. Buckley–Leverett equation - Wikipedia

    en.wikipedia.org/wiki/Buckley–Leverett_equation

    In fluid dynamics, the Buckley–Leverett equation is a conservation equation used to model two-phase flow in porous media. [1] The Buckley–Leverett equation or the Buckley–Leverett displacement describes an immiscible displacement process, such as the displacement of oil by water, in a one-dimensional or quasi-one-dimensional reservoir.

  9. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    Example of a parallel shear flow. In fluid dynamics, Rayleigh's equation or Rayleigh stability equation is a linear ordinary differential equation to study the hydrodynamic stability of a parallel, incompressible and inviscid shear flow. The equation is: [1] (″) ″ =,