Search results
Results from the WOW.Com Content Network
In one study, strain hardening exponent values extracted from tensile data from 58 steel pipes from natural gas pipelines were found to range from 0.08 to 0.25, [1] with the lower end of the range dominated by high-strength low alloy steels and the upper end of the range mostly normalized steels.
Moody's team used the available data (including that of Nikuradse) to show that fluid flow in rough pipes could be described by four dimensionless quantities: Reynolds number, pressure loss coefficient, diameter ratio of the pipe and the relative roughness of the pipe.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening ), showing a smooth elastic-plastic transition.
Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...
The typical test uses a 10 mm (0.39 in) diameter steel ball as an indenter with a 3,000 kgf (29.42 kN; 6,614 lbf) force. For softer materials, a smaller force is used; for harder materials, a tungsten carbide ball is substituted for the steel ball. The indentation is measured and hardness calculated as:
is the roughness of the inner surface of the pipe (dimension of length) D is inner pipe diameter; The Swamee–Jain equation is used to solve directly for the Darcy–Weisbach friction factor f for a full-flowing circular pipe. It is an approximation of the implicit Colebrook–White equation. [10]
Surface roughness, often shortened to roughness, is a component of surface finish (surface texture). It is quantified by the deviations in the direction of the normal vector of a real surface from its ideal form. If these deviations are large, the surface is rough; if they are small, the surface is smooth.
The Archard equation provides a simplified model of asperity deformation when materials in contact are subject to a force. Due to the ubiquitous presence of deformable asperities in self affine hierarchical structures, [ 4 ] the true contact area at an interface exhibits a linear relationship with the applied normal load.