Search results
Results from the WOW.Com Content Network
Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid.
As an example of the latter, a "major commercial application of liquefaction is the liquefaction of air to allow separation of the constituents, such as oxygen, nitrogen, and the noble gases." [4] Another is the conversion of solid coal into a liquid form usable as a substitute for liquid fuels. [5]
Both surface deformation and faulting and shaking-related geological effects (e.g., soil liquefaction, landslides) not only leave permanent imprints in the environment, but also dramatically affect human structures. Moreover, underwater fault ruptures and seismically triggered landslides can generate tsunami waves.
Soil contamination, soil pollution, or land pollution as a part of land degradation is caused by the presence of xenobiotic (human-made) chemicals or other alteration in the natural soil environment. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste .
Reclaimed land is highly susceptible to soil liquefaction during earthquakes, [34] which can amplify the amount of damage that occurs to buildings and infrastructure. Subsidence is another issue, both from soil compaction on filled land, and also when wetlands are enclosed by levees and drained to create polders .
The term ground failure is a general reference to landslides, liquefaction, lateral spreads, and any other consequence of shaking that affects the stability of the ground. This usually takes place as an after-effect of an earthquake , and is one of the major causes of destruction after an earthquake.
These stress waves can penetrate up to 10 metres (33 ft). In cohesionless soils, these waves create liquefaction that is followed by the compaction of the soil; in cohesive soils, they create an increased amount of pore water pressure that is followed by the compaction of the soil. Pore water pressure is the pressure of water that is trapped in ...
The final result was that the ionic 'glue' of the clay was weakened, to give a weak, loose soil skeleton, enclosing significant amounts of water (high sensitivity with high moisture content). Quick clay deposits are rarely located directly at the ground surface, but are typically covered by a normal layer of topsoil.