Ads
related to: algebra 2 definitionsuslegalforms.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
Among the exponential functions of the form α x, setting α = e 2/e = 2.0870652... results in a sharp upper bound; the slightly smaller choice α = 2 fails to produce an upper bound, since then α 3 = 8 < 3 2. In applied fields the word "tight" is often used with the same meaning. [2] smooth
Elementary algebra, also known as high school algebra or college algebra, [1] encompasses the basic concepts of algebra. It is often contrasted with arithmetic : arithmetic deals with specified numbers , [ 2 ] whilst algebra introduces variables (quantities without fixed values).
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
In plain text, the TeX mark-up language, and some programming languages such as MATLAB and Julia, the caret symbol, ^, represents exponents, so x 2 is written as x ^ 2. [ 8 ] [ 9 ] In programming languages such as Ada , [ 10 ] Fortran , [ 11 ] Perl , [ 12 ] Python [ 13 ] and Ruby , [ 14 ] a double asterisk is used, so x 2 is written as x ** 2.
The definition is equivalent to saying that a unital associative R-algebra is a monoid object in R-Mod (the monoidal category of R-modules). By definition, a ring is a monoid object in the category of abelian groups; thus, the notion of an associative algebra is obtained by replacing the category of abelian groups with the category of modules.
In the former case, equivalence of two definitions means that a mathematical object (for example, geometric body) satisfies one definition if and only if it satisfies the other definition. In the latter case, the meaning of equivalence (between two definitions of a structure) is more complicated, since a structure is more abstract than an object.
Ads
related to: algebra 2 definitionsuslegalforms.com has been visited by 100K+ users in the past month