Search results
Results from the WOW.Com Content Network
One version of the theorem, [1] also known as Campbell's formula, [2]: 28 entails an integral equation for the aforementioned sum over a general point process, and not necessarily a Poisson point process. [2] There also exist equations involving moment measures and factorial moment measures that are considered versions of Campbell's formula.
Probability is the branch of mathematics and statistics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] A simple example is the tossing of a fair (unbiased) coin. Since the ...
In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1] [2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]
This would mean that for a binary classification of images (with fictive 1000 pixel x 1000 pixel per image, i.e. 1 000 000 features per image), we would only require 2000 labels /1 000 0000 pixel = 0.002 labels per pixel or 0.002 labels per feature. This is however only due to the high (spatial) correlation of pixels.
This is the same as saying that the probability of event {1,2,3,4,6} is 5/6. This event encompasses the possibility of any number except five being rolled. The mutually exclusive event {5} has a probability of 1/6, and the event {1,2,3,4,5,6} has a probability of 1, that is, absolute certainty.
More specifically, for any fixed k, the probability that the first coin produces at least k heads should be less than the probability that the second coin produces at least k heads. However proving such a fact can be difficult with a standard counting argument. [1] Coupling easily circumvents this problem.
An invertible measure-preserving transformation on a standard probability space that obeys the 0-1 law is called a Kolmogorov automorphism. [clarification needed] All Bernoulli automorphisms are Kolmogorov automorphisms but not vice versa. The presence of an infinite cluster in the context of percolation theory also obeys the 0-1 law.
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.