enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.

  3. File:Animated visual proof of Ptolemy's theorem, based on ...

    en.wikipedia.org/wiki/File:Animated_visual_proof...

    English: Animated visual proof of Ptolemy's theorem, based on W. Derrick, J. Herstein (2012) Proof Without Words: Ptolemy's Theorem, The College Mathematics Journal, v 43, n 5, p 386 Date 22 May 2022

  4. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Proof of law of cosines using Ptolemy's theorem. Referring to the diagram, triangle ABC with sides AB = c, BC = a and AC = b is drawn inside its circumcircle as shown. Triangle ABD is constructed congruent to triangle ABC with AD = BC and BD = AC. Perpendiculars from D and C meet base AB at E and F respectively. Then:

  6. Casey's theorem - Wikipedia

    en.wikipedia.org/wiki/Casey's_theorem

    In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey. Formulation of the theorem [ edit ]

  7. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    Ptolemy's theorem expresses the product of the lengths of the two diagonals e and f of a cyclic quadrilateral as equal to the sum of the products of opposite sides: [9]: p.25 [2] e f = a c + b d , {\displaystyle \displaystyle ef=ac+bd,}

  8. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Ptolemy began a process of hellenization and commissioned numerous constructions, building the massive Musaeum institution, which was a leading center of education. [15] [g] Euclid is speculated to have been among the Musaeum's first scholars. [22] Euclid's date of death is unknown; it has been speculated that he died c. 270 BC. [22]

  9. Hipparchus - Wikipedia

    en.wikipedia.org/wiki/Hipparchus

    He also might have used the relationship between sides and diagonals of a cyclic quadrilateral, today called Ptolemy's theorem because its earliest extant source is a proof in the Almagest (I.10). The stereographic projection was ambiguously attributed to Hipparchus by Synesius (c. 400 AD), and on that basis Hipparchus is often credited with ...