Search results
Results from the WOW.Com Content Network
Some sink, source or node are equilibrium points. In mathematics , specifically in differential equations , an equilibrium point is a constant solution to a differential equation. Formal definition
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...
Some sink, source or node are equilibrium points. 2-dimensional case refers to Phase plane. In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems.
The linear approximation of a function is the first order Taylor expansion around the point of interest. In the study of dynamical systems, linearization is a method for assessing the local stability of an equilibrium point of a system of nonlinear differential equations or discrete dynamical systems. [1]
The most important type is that concerning the stability of solutions near to a point of equilibrium. This may be discussed by the theory of Aleksandr Lyapunov . In simple terms, if the solutions that start out near an equilibrium point x e {\displaystyle x_{e}} stay near x e {\displaystyle x_{e}} forever, then x e {\displaystyle x_{e}} is ...
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
In continuous systems, this corresponds to the real part of an eigenvalue of an equilibrium passing through zero. In discrete systems (described by maps), this corresponds to a fixed point having a Floquet multiplier with modulus equal to one. In both cases, the equilibrium is non-hyperbolic at the bifurcation point. The topological changes in ...
When is positive, there are two equilibrium points: that is, one saddle point and one node (either an attractor or a repellor). Other examples are in modelling biological switches. [ 4 ] Recently, it was shown that under certain conditions, the Einstein field equations of General Relativity have the same form as a fold bifurcation. [ 5 ]