Search results
Results from the WOW.Com Content Network
Agricultural land drainage has agricultural, environmental, hydrological, engineering, economical, social and socio-political aspects (Figure 1). All these aspects can be subject of drainage research. The aim (objective, target) of agricultural land drainage is the optimized agricultural production related to: reclamation of agricultural land
Drainage criteria One would not want the water table to be too shallow to avoid crop yield depression nor too deep to avoid drought conditions. This is a subject of drainage research. The figure shows that a seasonal average depth of the water table shallower than 70 cm causes a yield depression [5]
The primary method of controlling soil salinity is to permit 10–20% of the irrigation water to leach the soil, so that it will be drained and discharged through an appropriate drainage system. The salt concentration of the drainage water is normally 5 to 10 times higher than that of the irrigation water which meant that salt export will more ...
Drainage density depends upon both climate and physical characteristics of the drainage basin. Soil permeability (infiltration difficulty) and underlying rock type affect the runoff in a watershed; impermeable ground or exposed bedrock will lead to an increase in surface water runoff and therefore to more frequent
Classification of agricultural drainage systems. While there are more than two types of drainage systems employed in agriculture, there are two main types: (1) surface drainage and (2) sub-surface drainage. Crop yield (Y) and depth of water table (X in dm) [1] Figure 1 classifies the various types of drainage systems.
A variety of sieve sizes are available. The boundary between sand and silt is arbitrary. According to the Unified Soil Classification System, a #4 sieve (4 openings per inch) having 4.75 mm opening size separates sand from gravel and a #200 sieve with an 0.075 mm opening separates sand from silt and clay. According to the British standard, 0. ...
In the same fashion, the well drainage requirement can be found from well discharge (Wel) in the geohydrologic water balance or the overall water balance. The subsurface drainage requirement and well drainage requirement play an important role in the design of agricultural drainage systems (references:, [4] [5]).
Drainage options for the construction industry include: Point drainage, which intercepts water at gullies (points). Gullies connect to drainage pipes beneath the ground surface, so deep excavation is required to facilitate this system. Support for deep trenches is required in the shape of planking, strutting or shoring.