Search results
Results from the WOW.Com Content Network
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
Stoichiometry is often used to balance chemical equations (reaction stoichiometry). For example, the two diatomic gases, hydrogen and oxygen, can combine to form a liquid, water, in an exothermic reaction, as described by the following equation: 2 H 2 + O 2 → 2 H 2 O
the "chemical affinity" or "reaction force" between A and B did not just depend on the chemical nature of the reactants, as had previously been supposed, but also depended on the amount of each reactant in a reaction mixture. Thus the law of mass action was first stated as follows:
The concept of chemical equilibrium was developed in 1803, after Berthollet found that some chemical reactions are reversible. [4] For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions must be equal. In the following chemical equation, arrows point both ways to indicate equilibrium. [5]
In chemistry, the calculation of the amount of reactant and products in a chemical reaction, or stoichiometry, is founded on the principle of conservation of mass. The principle implies that during a chemical reaction the total mass of the reactants is equal to the total mass of the products. For example, in the following reaction
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
In chemistry, transition state theory (TST) explains the reaction rates of elementary chemical reactions. The theory assumes a special type of chemical equilibrium (quasi-equilibrium) between reactants and activated transition state complexes. [1] TST is used primarily to understand qualitatively how chemical reactions take place.
For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...