Search results
Results from the WOW.Com Content Network
A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:}. where denotes the supremum.
An example of such a space is the Fréchet space (), whose definition can be found in the article on spaces of test functions and distributions, because its topology is defined by a countable family of norms but it is not a normable space because there does not exist any norm ‖ ‖ on () such that the topology this norm induces is equal to .
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .
For example, points (2, 0), (2, 1), and (2, 2) lie along the perimeter of a square and belong to the set of vectors whose sup norm is 2. In mathematical analysis, the uniform norm (or sup norm) assigns, to real-or complex-valued bounded functions defined on a set , the non-negative number
The Frobenius norm defined by ‖ ‖ = = = | | = = = {,} is self-dual, i.e., its dual norm is ‖ ‖ ′ = ‖ ‖.. The spectral norm, a special case of the induced norm when =, is defined by the maximum singular values of a matrix, that is, ‖ ‖ = (), has the nuclear norm as its dual norm, which is defined by ‖ ‖ ′ = (), for any matrix where () denote the singular values ...
For example, scaling the vector by a positive constant does not change the "norm". Despite these defects as a mathematical norm, the non-zero counting "norm" has uses in scientific computing , information theory , and statistics –notably in compressed sensing in signal processing and computational harmonic analysis .
One of the basic examples of norms comes from quadratic field extensions () / where is a square-free integer.. Then, the multiplication map by on an element + is (+) = +.The element + can be represented by the vector