Search results
Results from the WOW.Com Content Network
Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).
Mutual information has been used as a criterion for feature selection and feature transformations in machine learning. It can be used to characterize both the relevance and redundancy of variables, such as the minimum redundancy feature selection. Mutual information is used in determining the similarity of two different clusterings of a dataset.
Redundancy of compressed data refers to the difference between the expected compressed data length of messages () (or expected data rate () /) and the entropy (or entropy rate ). (Here we assume the data is ergodic and stationary , e.g., a memoryless source.)
Machine learning can be considered a subfield of computer science and statistics. It has strong ties to artificial intelligence and optimization, which deliver methods, theory and application domains to the field. Machine learning is employed in a range of computing tasks where designing and programming explicit, rule-based algorithms is
In machine learning, this concept can be used to define a preferred sequence of attributes to investigate to most rapidly narrow down the state of X. Such a sequence (which depends on the outcome of the investigation of previous attributes at each stage) is called a decision tree , and when applied in the area of machine learning is known as ...
Google JAX is a machine learning framework for transforming numerical functions. [1] [2] [3] It is described as bringing together a modified version of autograd (automatic obtaining of the gradient function through differentiation of a function) and TensorFlow's XLA (Accelerated Linear Algebra).
There is a close connection between machine learning and compression. A system that predicts the posterior probabilities of a sequence given its entire history can be used for optimal data compression (by using arithmetic coding on the output distribution). Conversely, an optimal compressor can be used for prediction (by finding the symbol that ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file