Search results
Results from the WOW.Com Content Network
High-cardinality refers to columns with values that are very uncommon or unique. High-cardinality column values are typically identification numbers, email addresses, or user names. An example of a data table column with high-cardinality would be a USERS table with a column named USER_ID. This column would contain unique values of 1-n. Each ...
In the object-oriented application programming paradigm, which is related to database structure design, UML class diagrams may be used for object modeling. In that case, object relationships are modeled using UML associations, and multiplicity is used on those associations to denote cardinality. Here are some examples: [5]
For example, take a car and an owner of the car. The car can only be owned by one owner at a time or not owned at all, and an owner could own zero, one, or multiple cars. One owner could have many cars, one-to-many. In a relational database, a one-to-many relationship exists when one record is related to many records of another table. A one-to ...
For example, think of A as Authors, and B as Books. An Author can write several Books, and a Book can be written by several Authors. In a relational database management system, such relationships are usually implemented by means of an associative table (also known as join table, junction table or cross-reference table), say, AB with two one-to-many relationships A → AB and B → AB.
A bitmap index is a special kind of database index that uses bitmaps.. Bitmap indexes have traditionally been considered to work well for low-cardinality columns, which have a modest number of distinct values, either absolutely, or relative to the number of records that contain the data.
The relational model (RM) is an approach to managing data using a structure and language consistent with first-order predicate logic, first described in 1969 by English computer scientist Edgar F. Codd, [1] [2] where all data are represented in terms of tuples, grouped into relations.
In computer science, the count-distinct problem [1] (also known in applied mathematics as the cardinality estimation problem) is the problem of finding the number of distinct elements in a data stream with repeated elements. This is a well-known problem with numerous applications.
For example, if a contact record is classified as "customer" then it must have at least one associated order (cardinality > 0). This type of rule can be complicated by additional conditions. For example, if a contact record in a payroll database is classified as "former employee" then it must not have any associated salary payments after the ...