enow.com Web Search

  1. Ads

    related to: eulerian numbers practice problems with answers alg 2 worksheet 5th

Search results

  1. Results from the WOW.Com Content Network
  2. Eulerian number - Wikipedia

    en.wikipedia.org/wiki/Eulerian_number

    In combinatorics, the Eulerian number (,) is the number of permutations of the numbers 1 to in which exactly elements are greater than the previous element (permutations with "ascents"). Leonhard Euler investigated them and associated polynomials in his 1755 book Institutiones calculi differentialis .

  3. Euler numbers - Wikipedia

    en.wikipedia.org/wiki/Euler_numbers

    The Euler numbers appear in the Taylor series expansions of the secant and hyperbolic secant functions. The latter is the function in the definition. They also occur in combinatorics, specifically when counting the number of alternating permutations of a set with an even number of elements.

  4. Eisenstein integer - Wikipedia

    en.wikipedia.org/wiki/Eisenstein_integer

    3 and each rational prime congruent to 1 mod 3 are equal to the norm x 2 − xy + y 2 of an Eisenstein integer x + ωy. Thus, such a prime may be factored as ( x + ωy )( x + ω 2 y ) , and these factors are Eisenstein primes: they are precisely the Eisenstein integers whose norm is a rational prime.

  5. Lucky numbers of Euler - Wikipedia

    en.wikipedia.org/wiki/Lucky_numbers_of_Euler

    Leonhard Euler published the polynomial k 2 − k + 41 which produces prime numbers for all integer values of k from 1 to 40. Only 6 lucky numbers of Euler exist, namely 2, 3, 5, 11, 17 and 41 (sequence A014556 in the OEIS). [1] Note that these numbers are all prime numbers. The primes of the form k 2 − k + 41 are

  6. List of topics named after Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/List_of_topics_named_after...

    Euler numbers, integers occurring in the coefficients of the Taylor series of 1/cosh t; Eulerian numbers count certain types of permutations. Euler number (physics), the cavitation number in fluid dynamics. Euler number (algebraic topology) – now, Euler characteristic, classically the number of vertices minus edges plus faces of a polyhedron.

  7. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    hence has Betti number 1 in dimensions 0 and n, and all other Betti numbers are 0. Its Euler characteristic is then χ = 1 + (−1) n ; that is, either 0 if n is odd , or 2 if n is even . The n dimensional real projective space is the quotient of the n sphere by the antipodal map .

  1. Ads

    related to: eulerian numbers practice problems with answers alg 2 worksheet 5th