Search results
Results from the WOW.Com Content Network
A comparison between discrete rate, continuous, and discrete event simulation. Discrete rate simulation is similar to discrete event simulation in that both methodologies model the operation of the system as a discrete sequence of events in time. However, while discrete event simulation assumes there is no change in the system between ...
Continuous modelling is the mathematical practice of applying a model to continuous data (data which has a potentially infinite number, and divisibility, of attributes). They often use differential equations [1] and are converse to discrete modelling. Modelling is generally broken down into several steps:
Continuous dynamic systems can only be captured by a continuous simulation model, while discrete dynamic systems can be captured either in a more abstract manner by a continuous simulation model (like the Lotka-Volterra equations for modeling a predator-prey eco-system) or in a more realistic manner by a discrete event simulation model (in a ...
Discrete vs. continuous. A discrete model treats objects as discrete, such as the particles in a molecular model or the states in a statistical model; while a continuous model represents the objects in a continuous manner, such as the velocity field of fluid in pipe flows, temperatures and stresses in a solid, and electric field that applies ...
A discrete-event simulation (DES) models the operation of a system as a sequence of events in time. Each event occurs at a particular instant in time and marks a change of state in the system. [ 1 ] Between consecutive events, no change in the system is assumed to occur; thus the simulation time can directly jump to the occurrence time of the ...
Dichotomization is the special case of discretization in which the number of discrete classes is 2, which can approximate a continuous variable as a binary variable (creating a dichotomy for modeling purposes, as in binary classification). Discretization is also related to discrete mathematics, and is an important component of granular computing.
Discrete choice models theoretically or empirically model choices made by people among a finite set of alternatives. The models have been used to examine, e.g., the choice of which car to buy, [ 1 ] [ 3 ] where to go to college, [ 4 ] which mode of transport (car, bus, rail) to take to work [ 5 ] among numerous other applications.
Mechanisms for discretizing continuous data include Fayyad & Irani's MDL method, [2] which uses mutual information to recursively define the best bins, CAIM, CACC, Ameva, and many others [3] Many machine learning algorithms are known to produce better models by discretizing continuous attributes.