Search results
Results from the WOW.Com Content Network
The shear modulus is one of several quantities for measuring the stiffness of materials. All of them arise in the generalized Hooke's law: . Young's modulus E describes the material's strain response to uniaxial stress in the direction of this stress (like pulling on the ends of a wire or putting a weight on top of a column, with the wire getting longer and the column losing height),
A36 steel has a Poisson's ratio of 0.26 and a shear modulus of 11,500 ksi (79.3 GPa). [7] A36 steel in plates, bars, and shapes with a thickness of less than 8 inches (203 millimeters) has a minimum yield strength of 36 ksi (250 MPa) and ultimate tensile strength of 58–80 ksi (400–550 MPa).
The elastic properties can be well-characterized by the Young's modulus, Poisson's ratio, Bulk modulus, and Shear modulus or they may be described by the Lamé parameters. Young's modulus [ edit ]
The governing formula for this mechanism is: Δ σ y = G b ρ {\displaystyle \Delta \sigma _{y}=Gb{\sqrt {\rho }}} where σ y {\displaystyle \sigma _{y}} is the yield stress, G is the shear elastic modulus, b is the magnitude of the Burgers vector , and ρ {\displaystyle \rho } is the dislocation density.
Approximate bulk modulus (K) for other substances β-Carbon nitride: 427 ± 15 GPa [7] (predicted) Water: 2.2 GPa (0.32 Mpsi) (value increases at higher pressures) Methanol 823 MPa (at 20 °C and 1 Atm) Solid helium: 50 MPa (approximate) Air 142 kPa (adiabatic bulk modulus [or isentropic bulk modulus]) Air 101 kPa (isothermal bulk modulus ...
The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G) Initial structure: Start with a relaxed structure of the material. All atoms should be in a state of minimum energy with no ...
Young's modulus is commonly measured in the International System of Units (SI) in multiples of the pascal (Pa) and common values are in the range of gigapascals (GPa). Examples: Rubber (increasing pressure: length increases quickly, meaning low ) Aluminium (increasing pressure: length increases slowly, meaning high )
In engineering, the elasticity of a material is quantified by the elastic modulus such as the Young's modulus, bulk modulus or shear modulus which measure the amount of stress needed to achieve a unit of strain; a higher modulus indicates that the material is harder to deform. The SI unit of this modulus is the pascal (Pa).