Search results
Results from the WOW.Com Content Network
A common practice in data mining is to classify, to look at the attributes of an object or situation and make a guess at what category the observed item belongs to. As new evidence is examined (typically by feeding a training set to a learning algorithm), these guesses are refined and improved. Contrast set learning works in the opposite direction.
Classification algorithms (3 C, 85 P) Cluster analysis algorithms (42 P) Pages in category "Data mining algorithms" The following 6 pages are in this category, out of ...
An associative classifier (AC) is a kind of supervised learning model that uses association rules to assign a target value. The term associative classification was coined by Bing Liu et al., [1] in which the authors defined a model made of rules "whose right-hand side are restricted to the classification class attribute".
Decision trees used in data mining are of two main types: Classification tree analysis is when the predicted outcome is the class (discrete) to which the data belongs. Regression tree analysis is when the predicted outcome can be considered a real number (e.g. the price of a house, or a patient's length of stay in a hospital).
Tanagra is a free suite of machine learning software for research and academic purposes developed by Ricco Rakotomalala at the Lumière University Lyon 2, France. [1] [2] Tanagra supports several standard data mining tasks such as: Visualization, Descriptive statistics, Instance selection, feature selection, feature construction, regression, factor analysis, clustering, classification and ...
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Formally, an "ordinary" classifier is some rule, or function, that assigns to a sample x a class label ลท: y ^ = f ( x ) {\displaystyle {\hat {y}}=f(x)} The samples come from some set X (e.g., the set of all documents , or the set of all images ), while the class labels form a finite set Y defined prior to training.
Massive Online Analysis (MOA) is a free open-source software project specific for data stream mining with concept drift. It is written in Java and developed at the University of Waikato, New Zealand. [2]