Search results
Results from the WOW.Com Content Network
[1] For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric ...
17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...
Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
Pascal chooses the result of the mod operation positive, but does not allow d to be negative or zero (so, a = (a div d) × d + a mod d is not always valid). [4] C99 chooses the remainder with the same sign as the dividend a. [5] (Before C99, the C language allowed other choices.)
When k = 1, Babbage's theorem implies that it holds for n = p 2 for p an odd prime, while Wolstenholme's theorem implies that it holds for n = p 3 for p > 3, and it holds for n = p 4 if p is a Wolstenholme prime. When k = 2, it holds for n = p 2 if p is a Wolstenholme prime. These three numbers, 4 = 2 2, 8 = 2 3, and 27 = 3 3 are not held for ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...