Search results
Results from the WOW.Com Content Network
Relationship of the atmosphere and ionosphere. The ionosphere (/ aɪ ˈ ɒ n ə ˌ s f ɪər /) [1] [2] is the ionized part of the upper atmosphere of Earth, from about 48 km (30 mi) to 965 km (600 mi) above sea level, [3] a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar ...
Ionospheric storms can happen at any time and location. [6] F-region and D-region ionospheric storms are also considered main categories of ionospheric storms. The F-region storms occur due to sudden increases of energised electrons instilled into Earth's ionosphere. The F-region is the highest region of the ionosphere.
A sudden ionospheric disturbance (SID) is any one of several ionospheric perturbations, resulting from abnormally high ionization/plasma density in the D region of the ionosphere and caused by a solar flare and/or solar particle event (SPE).
International Reference Ionosphere (IRI) is a common permanent scientific project of the Committee on Space Research (COSPAR) and the International Union of Radio Science (URSI) started 1968/69. It is the international standard empirical model for the terrestrial ionosphere since 1999.
Here R is the mean Earth radius, H is the mean height of the ionosphere shell. The IPP or Ionospheric Pierce Point is the altitude in the ionosphere where electron density is greatest. [1] These points can change based on factors like time of day, solar activity, and geographical location, which all influence ionospheric conditions. [2]
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines.
It is responsible for the electric Sq currents within the ionospheric dynamo region between about 100 and 200 km altitude. [12] Both diurnal and semidiurnal tides can be observed across the ionospheric dynamo region with incoherent scatter radars by tracking the tidal motion of ionospheric plasma.