Search results
Results from the WOW.Com Content Network
The circumference of a circle is the distance around it, but if, as in many elementary treatments, distance is defined in terms of straight lines, this cannot be used as a definition. Under these circumstances, the circumference of a circle may be defined as the limit of the perimeters of inscribed regular polygons as the number of sides ...
The ratio of a circle's circumference to its diameter is π (pi), an irrational constant approximately equal to 3.141592654. The ratio of a circle's circumference to its radius is 2 π . [ a ] Thus the circumference C is related to the radius r and diameter d by: C = 2 π r = π d . {\displaystyle C=2\pi r=\pi d.}
The number π (/ p aɪ /; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159.The number π appears in many formulae across mathematics and physics.
The perimeter of a circle or an ellipse is called its circumference. Calculating the perimeter has several practical applications. A calculated perimeter is the length of fence required to surround a yard or garden. The perimeter of a wheel/circle (its circumference) describes how far it will roll in one revolution. Similarly, the amount of ...
Proposition one states: The area of any circle is equal to a right-angled triangle in which one of the sides about the right angle is equal to the radius, and the other to the circumference of the circle. Any circle with a circumference c and a radius r is equal in area with a right triangle with the two legs being c and r.
The diameter or metric diameter of a subset of a metric space is the least upper bound of the set of all distances between pairs of points in the subset. Explicitly, if S {\displaystyle S} is the subset and if ρ {\displaystyle \rho } is the metric , the diameter is diam ( S ) = sup x , y ∈ S ρ ( x , y ) . {\displaystyle \operatorname ...
Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter. By Thales' theorem , this is a right triangle with right angle at B. Let the length of A′B be c n , which we call the complement of s n ; thus c n 2 + s n 2 = (2 r ) 2 .
The hydraulic diameter is the equivalent circular configuration with the same circumference as the wetted perimeter. The area of a circle of radius R is π R 2 {\displaystyle \pi R^{2}} . Given the area of a non-circular object A , one can calculate its area-equivalent radius by setting