Search results
Results from the WOW.Com Content Network
DNA-protein crosslinking can be caused by a variety of chemical and physical agents, including transition metals, ionizing radiation, and endogenous aldehydes, in addition to chemotherapeutic agents. [26] Similar to DNA crosslinking, DNA-protein crosslinks are lesions in cells that are frequently damaged by UV radiation.
Genomic DNA is tightly and orderly packed in the process called DNA condensation, to fit the small available volumes of the cell. In eukaryotes, DNA is located in the cell nucleus, with small amounts in mitochondria and chloroplasts. In prokaryotes, the DNA is held within an irregularly shaped body in the cytoplasm called the nucleoid. [97]
The primary structure of a biopolymer is the exact specification of its atomic composition and the chemical bonds connecting those atoms (including stereochemistry).For a typical unbranched, un-crosslinked biopolymer (such as a molecule of a typical intracellular protein, or of DNA or RNA), the primary structure is equivalent to specifying the sequence of its monomeric subunits, such as amino ...
DNA uses the deoxynucleotides C, G, A, and T, while RNA uses the ribonucleotides (which have an extra hydroxyl(OH) group on the pentose ring) C, G, A, and U. Modified bases are fairly common (such as with methyl groups on the base ring), as found in ribosomal RNA or transfer RNAs or for discriminating the new from old strands of DNA after ...
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as purines and pyrimidines. The purines are adenine and guanine ...
Some of the aldehydes from lipid peroxidation can be converted to epoxy aldehydes by oxidation reactions. [23] These epoxy aldehydes can damage DNA by producing etheno adducts. An increase in this type of DNA lesion exhibits conditions resulting in oxidative stress which is known to be associated with an increased risk of cancer. [24]
In the presence of excess reagent, an additional elimination can occur on the 5' side. The free aldehyde can also react with nucleophilic, amine-containing aldehydes. These reactions can further promote phosphoester bond cleavage. Aldehydes containing O-HN 2 groups can serve to stabilize the abasic site by reacting with the aldehyde group. This ...