Search results
Results from the WOW.Com Content Network
Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2257 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...
Temperature-dependency of the heats of vaporization for water, methanol, benzene, and acetone. In thermodynamics, the enthalpy of vaporization (symbol ∆H vap), also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy that must be added to a liquid substance to transform a quantity of that substance into a gas.
Std enthalpy change of vaporization, Δ vap H o: 44.0 kJ/mol Enthalpy change of vaporization at 373.15 K, Δ vap H: 40.68 kJ/mol Std entropy change of vaporization, Δ vap S o: 118.89 J/(mol·K) Entropy change of vaporization at 373.15 K, Δ vap S: 109.02 J/(mol·K) Enthalpy change of sublimation at 273.15 K, Δ sub H: 51.1 kJ/mol Std entropy ...
Finally Black increased the temperature of and vaporized respectively two equal masses of water through even heating. He showed that 830 “degrees of heat” was needed for the vaporization; again based on the time required. The modern value for the heat of vaporization of water would be 967 “degrees of heat” on the same scale. [19]
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The various triple points of water Phases in stable equilibrium Pressure Temperature liquid water, ice I h, and water vapor 611.657 Pa [8] 273.16 K (0.01 °C) liquid water, ice I h, and ice III: 209.9 MPa 251 K (−22 °C) liquid water, ice III, and ice V: 350.1 MPa −17.0 °C liquid water, ice V, and ice VI: 632.4 MPa 0.16 °C
J.A. Dean (ed.), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.4, Heats of Fusion, Vaporization, and Sublimation and Specific Heat at Various Temperatures of the Elements and Inorganic Compounds
Specific heat capacity often varies with temperature, and is different for each state of matter. Liquid water has one of the highest specific heat capacities among common substances, about 4184 J⋅kg −1 ⋅K −1 at 20 °C; but that of ice, just below 0 °C, is only 2093 J⋅kg −1 ⋅K −1.