Search results
Results from the WOW.Com Content Network
The main application of statistical power is "power analysis", a calculation of power usually done before an experiment is conducted using data from pilot studies or a literature review. Power analyses can be used to calculate the minimum sample size required so that one can be reasonably likely to detect an effect of a given size (in other ...
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, [1] chemistry, neuroscience, [2] computer science, [3] [4] information theory [5] and ...
In statistics, a power transform is a family of functions applied to create a monotonic transformation of data using power functions.It is a data transformation technique used to stabilize variance, make the data more normal distribution-like, improve the validity of measures of association (such as the Pearson correlation between variables), and for other data stabilization procedures.
In statistics, a power law is a functional relationship between two quantities, where a relative change in one quantity results in a relative change in the other quantity proportional to the change raised to a constant exponent: one quantity varies as a power of another. The change is independent of the initial size of those quantities.
Power in mechanical systems is the combination of forces and movement. In particular, power is the product of a force on an object and the object's velocity, or the product of a torque on a shaft and the shaft's angular velocity. Mechanical power is also described as the time derivative of work.
It is at the intersection of electronic engineering, mathematics, statistics, computer science, neurobiology, physics, and electrical engineering. [2] [3] A key measure in information theory is entropy. Entropy quantifies the amount of uncertainty involved in the value of a random variable or the outcome of a random process.
In statistical physics, the kinetic theory of gases applies Newton's laws of motion to large numbers (typically on the order of the Avogadro number) of particles. Kinetic theory can explain, for example, the pressure that a gas exerts upon the container holding it as the aggregate of many impacts of atoms, each imparting a tiny amount of momentum.
In calculus, the power rule is used to differentiate functions of the form () =, whenever is a real number. Since differentiation is a linear operation on the space of differentiable functions, polynomials can also be differentiated using this rule.