enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time-scale calculus - Wikipedia

    en.wikipedia.org/wiki/Time-scale_calculus

    A time scale (or measure chain) is a closed subset of the real line. The common notation for a general time scale is T {\displaystyle \mathbb {T} } . The two most commonly encountered examples of time scales are the real numbers R {\displaystyle \mathbb {R} } and the discrete time scale h Z {\displaystyle h\mathbb {Z} } .

  3. Discrete time and continuous time - Wikipedia

    en.wikipedia.org/wiki/Discrete_time_and...

    Discrete time views values of variables as occurring at distinct, separate "points in time", or equivalently as being unchanged throughout each non-zero region of time ("time period")—that is, time is viewed as a discrete variable. Thus a non-time variable jumps from one value to another as time moves from one time period to the next.

  4. Multiple-scale analysis - Wikipedia

    en.wikipedia.org/wiki/Multiple-scale_analysis

    In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables. This is done by introducing fast-scale and slow-scale variables for ...

  5. Dynamical time scale - Wikipedia

    en.wikipedia.org/wiki/Dynamical_time_scale

    In time standards, dynamical time is the independent variable of the equations of celestial mechanics. This is in contrast to time scales such as mean solar time which are based on how far the earth has turned. Since Earth's rotation is not constant, using a time scale based on it for calculating the positions of heavenly objects gives errors ...

  6. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/.../Continuous_or_discrete_variable

    A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue. The likelihood of a customer experiencing a zero wait time is discrete, while non-zero wait times are evaluated on a continuous time scale. [16]

  7. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  8. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.

  9. Help:EasyTimeline syntax - Wikipedia

    en.wikipedia.org/wiki/Help:EasyTimeline_syntax

    The EasyTimeline feature produces an embedded image from wikitext. The image can be a one-dimensional diagram (horizontally or vertically), or a two-dimensional one. The name "EasyTimeline" refers to the possibility to apply the feature with a time scale horizontally or vertically, possibly with another parameter in the other direction, but there are also various other possibilities.