Search results
Results from the WOW.Com Content Network
As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.
In practice, all event horizons appear to be some distance away from any observer, and objects sent towards an event horizon never appear to cross it from the sending observer's point of view (as the horizon-crossing event's light cone never intersects the observer's world line). Attempting to make an object near the horizon remain stationary ...
Nothing can travel that fast, so nothing within a certain distance, proportional to the mass of the black hole, can escape beyond that distance. The region beyond which not even light can escape is the event horizon; an observer outside it cannot observe, become aware of, or be affected by events within the event horizon. [5]: 25–36
The extension of the exterior region of the Schwarzschild vacuum solution inside the event horizon of a spherically symmetric black hole is not static inside the horizon, and the family of (spacelike) nested spheres cannot be extended inside the horizon, so the Schwarzschild chart for this solution necessarily breaks down at the horizon.
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
It also seems to have a singularity on the event horizon r = r s. Depending on the point of view, the metric is therefore defined only on the exterior region >, only on the interior region < or their disjoint union. However, the metric is actually non-singular across the event horizon, as one sees in suitable coordinates (see below).
The particle horizon is the boundary between two regions at a point at a given time: one region defined by events that have already been observed by an observer, and the other by events which cannot be observed at that time. It represents the furthest distance from which we can retrieve information from the past, and so defines the observable ...
Both of these facts would also be true if we were considering a set of observers hovering outside the event horizon of a black hole, each observer hovering at a constant radius in Schwarzschild coordinates. In fact, in the close neighborhood of a black hole, the geometry close to the event horizon can be described in Rindler coordinates.