enow.com Web Search

  1. Ad

    related to: modular arithmetic identities examples problems

Search results

  1. Results from the WOW.Com Content Network
  2. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  3. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    3 Modular arithmetic. 4 Arithmetic functions. 5 Analytic number theory: additive problems. 6 Algebraic number theory. ... Basel problem on ζ(2)

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ 1 (mod n).

  5. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    This result may be deduced from Fermat's little theorem by the fact that, if p is an odd prime, then the integers modulo p form a finite field, in which 1 modulo p has exactly two square roots, 1 and −1 modulo p. Note that a d ≡ 1 (mod p) holds trivially for a ≡ 1 (mod p), because the congruence relation is compatible with exponentiation.

  6. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The corresponding addition and multiplication of equivalence classes is known as modular arithmetic. From the point of view of abstract algebra, congruence modulo n {\displaystyle n} is a congruence relation on the ring of integers, and arithmetic modulo n {\displaystyle n} occurs on the corresponding quotient ring .

  7. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    The congruence relation, modulo m, partitions the set of integers into m congruence classes. Operations of addition and multiplication can be defined on these m objects in the following way: To either add or multiply two congruence classes, first pick a representative (in any way) from each class, then perform the usual operation for integers on the two representatives and finally take the ...

  8. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .

  9. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    In modular arithmetic, a number g is a primitive root modulo n if every number a coprime to n is congruent to a power of g modulo n. That is, g is a primitive root modulo n if for every integer a coprime to n, there is some integer k for which g k ≡ a (mod n). Such a value k is called the index or discrete logarithm of a to the base g modulo n.

  1. Ad

    related to: modular arithmetic identities examples problems