Search results
Results from the WOW.Com Content Network
In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. [1] In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. [2]
Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also. As a consequence, the cardinality of the real numbers, which is the same as that of the power set of the integers, is strictly larger than the cardinality of the integers; see Cardinality of the ...
Although E is a proper subset of N, both sets have the same cardinality. N does not have the same cardinality as its power set P(N): For every function f from N to P(N), the set T = {n∈N: n∉f(n)} disagrees with every set in the range of f, hence f cannot be surjective.
Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers a < b , no matter how close they are to each other, there are always infinitely many other real numbers, and Cantor showed that they are as many as those ...
He also proved that is equal to , the cardinality of the power set of the natural numbers. The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers , ℵ 0 {\displaystyle \aleph _{0}} , or ...
The notion of cardinality, as now understood, was formulated by Georg Cantor, the originator of set theory, in 1874–1884. Cardinality can be used to compare an aspect of finite sets. For example, the sets {1,2,3} and {4,5,6} are not equal, but have the same cardinality, namely three.
Hence, the set {banana, apple, pear} has the same cardinality as {yellow, red, green}. With infinite sets such as the set of integers or rational numbers, the existence of a bijection between two sets becomes more difficult to demonstrate. The rational numbers seemingly form a counterexample to the continuum hypothesis: the integers form a ...
Then (in the von Neumann formulation of cardinality) C is a set and therefore has a power set 2 C which, by Cantor's theorem, has cardinality strictly larger than C. Demonstrating a cardinality (namely that of 2 C) larger than C, which was assumed to be the greatest cardinal number, falsifies the definition of C. This contradiction establishes ...