enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mars sol - Wikipedia

    en.wikipedia.org/wiki/Mars_sol

    The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]

  3. Timekeeping on Mars - Wikipedia

    en.wikipedia.org/wiki/Timekeeping_on_Mars

    Definition of year and seasons. The length of time for Mars to complete one orbit around the Sun in respect to the stars, its sidereal year, is about 686.98 Earth solar days (≈ 1.88 Earth years), or 668.5991 sols. Because of the eccentricity of Mars' orbit, the seasons are not of equal length.

  4. Mars - Wikipedia

    en.wikipedia.org/wiki/Mars

    The solar day (or sol) on Mars is only slightly longer than an Earth day: 24 hours, 39 minutes, and 35.244 seconds. [185] A Martian year is equal to 1.8809 Earth years, or 1 year, 320 days, and 18.2 hours. [2] The gravitational potential difference and thus the delta-v needed to transfer between Mars and Earth is the second lowest for Earth ...

  5. Mars is rotating more quickly, NASA mission finds - AOL

    www.aol.com/news/mars-rotating-more-quickly-nasa...

    A Martian day lasts about 40 minutes longer than a day on Earth. The increased acceleration seems incredibly small, and researchers aren’t quite sure what is causing it.

  6. Darian calendar - Wikipedia

    en.wikipedia.org/wiki/Darian_calendar

    The basic time periods from which the calendar is constructed are the Martian solar day (sometimes called a sol) and the Martian vernal equinox year.The sol is 39 minutes 35.244 seconds longer than the Terrestrial solar day, and the Martian vernal equinox year is 668.5907 sols in length (which corresponds to 686.9711 days on Earth).

  7. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    Rotation period (astronomy) In astronomy, the rotation period or spin period[1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background ...

  8. Deimos (moon) - Wikipedia

    en.wikipedia.org/wiki/Deimos_(moon)

    The Sun-synodic orbital period of Deimos of about 30.4 hours exceeds the Martian solar day ("sol") of about 24.7 hours by such a small amount that 2.48 days (2.41 sols) elapse between its rising and setting for an equatorial observer. From Deimos-rise to Deimos-rise (or setting to setting), 5.466 days (5.320 sols) elapse. [citation needed]

  9. Astronomy on Mars - Wikipedia

    en.wikipedia.org/wiki/Astronomy_on_Mars

    On both Earth and Mars, these two precessions are in opposite directions, and therefore add, to make the precession cycle between the tropical and anomalistic years 21,000 years on Earth and 29,700 Martian years (55,900 Earth years) on Mars. As on Earth, the period of rotation of Mars (the length of its day) is slowing down.