Search results
Results from the WOW.Com Content Network
The physics convention. Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.
Radial distance, typically denoted r or ρ , is the distance from the origin to a point along the radial dimension in a: Polar coordinate system; Spherical coordinate ...
Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ): . The polar angle is denoted by [,]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
Hydrogen atomic orbitals of different energy levels. The more opaque areas are where one is most likely to find an electron at any given time. In quantum mechanics, a spherically symmetric potential is a system of which the potential only depends on the radial distance from the spherical center and a location in space.
Small circle of a sphere. In spherical geometry, a spherical circle (often shortened to circle) is the locus of points on a sphere at constant spherical distance (the spherical radius) from a given point on the sphere (the pole or spherical center).
This is more than an analogy; spherical and plane geometry and others can all be unified under the umbrella of geometry built from distance measurement, where "lines" are defined to mean shortest paths (geodesics). Many statements about the geometry of points and such "lines" are equally true in all those geometries provided lines are defined ...