Search results
Results from the WOW.Com Content Network
An equilateral triangle is a triangle in which all three sides have the same length, and all three angles are equal. Because of these properties, the equilateral triangle is a regular polygon, occasionally known as the regular triangle. It is the special case of an isosceles triangle by modern definition, creating more special properties.
The pedal triangle of an isodynamic point, the triangle formed by dropping perpendiculars from to each of the three sides of triangle , is equilateral, [5] as is the triangle formed by reflecting across each side of the triangle. [7] Among all the equilateral triangles inscribed in triangle , the pedal triangle of the first isodynamic point is ...
Triangles have many types based on the length of the sides and the angles. A triangle whose sides are all the same length is an equilateral triangle, [3] a triangle with two sides having the same length is an isosceles triangle, [4] [a] and a triangle with three different-length sides is a scalene triangle. [7]
For any interior point P, the sum of the lengths of the perpendiculars s + t + u equals the height of the equilateral triangle.. Viviani's theorem, named after Vincenzo Viviani, states that the sum of the shortest distances from any interior point to the sides of an equilateral triangle equals the length of the triangle's altitude. [1]
The Tetractys [also known as the decad] is an equilateral triangle formed from the sequence of the first ten numbers aligned in four rows. It is both a mathematical idea and a metaphysical symbol that embraces within itself—in seedlike form—the principles of the natural world, the harmony of the cosmos, the ascent to the divine, and the ...
regular tetrahedron, a pyramid with four equilateral triangles, one of which can be considered the base. triangular bipyramid, regular octahedron, and pentagonal bipyramid, a bipyramid with six, eight, and ten equilateral triangles, respectively. They are constructed by identical pyramids base-to-base.
The dihedral group D 3 is the symmetry group of an equilateral triangle, that is, it is the set of all rigid transformations (reflections, rotations, and combinations of these) that leave the shape and position of this triangle fixed.
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.