Search results
Results from the WOW.Com Content Network
The RNA chain is synthesized from the 5' end to the 3' end as the 3'-hydroxyl group of the last ribonucleotide in the chain acts as a nucleophile and launches a hydrophilic attack on the 5'-triphosphate of the incoming ribonucleotide, releasing pyrophosphate as a by-[6] product. Due to the physical properties of the nucleotides, the backbone of ...
Ribonucleic acid (RNA) is a polymeric molecule that is essential for most biological functions, either by performing the function itself (non-coding RNA) or by forming a template for the production of proteins (messenger RNA). RNA and deoxyribonucleic acid (DNA) are nucleic acids.
5' cap structure. A 5' cap (also termed an RNA cap, an RNA 7-methylguanosine cap, or an RNA m 7 G cap) is a modified guanine nucleotide that has been added to the "front" or 5' end of a eukaryotic messenger RNA shortly after the start of transcription. The 5' cap consists of a terminal 7-methylguanosine residue that is linked through a 5'-5 ...
This template is intended for use on nucleic acid structure pages. To insert use: {{DNA RNA structure}}. On the primary, secondary, tertiary and quaternary structure pages, it displays alternative versions of the image with the relevant section highlighted. Alternatively, for the non-interactive image, use [[File:DNA RNA structure (full).png]]
Bacterial 16S ribosomal RNA, 23S ribosomal RNA, and 5S rRNA genes are typically organized as a co-transcribed operon. As shown by the image in this section, there is an internal transcribed spacer between 16S and 23S rRNA genes. [28] There may be one or more copies of the operon dispersed in the genome (for example, Escherichia coli has seven ...
An RNA pseudoknot structure. For example, the RNA component of human telomerase. [7] A pseudoknot is a nucleic acid secondary structure containing at least two stem-loop structures in which half of one stem is intercalated between the two halves of another stem.
Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary, and quaternary.
Ribosomes bind to the messenger RNA molecules and use the RNA's sequence of nucleotides to determine the sequence of amino acids needed to generate a protein. Amino acids are selected and carried to the ribosome by transfer RNA (tRNA) molecules, which enter the ribosome and bind to the messenger RNA chain via an anti-codon stem loop.