Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
The probability mass function of a Poisson-distributed random variable with mean μ is given by (;) =!.for (and zero otherwise). The Skellam probability mass function for the difference of two independent counts = is the convolution of two Poisson distributions: (Skellam, 1946)
In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory.
If X 1 and X 2 are Poisson random variables with means μ 1 and μ 2 respectively, then X 1 + X 2 is a Poisson random variable with mean μ 1 + μ 2. The sum of gamma (α i, β) random variables has a gamma (Σα i, β) distribution. If X 1 is a Cauchy (μ 1, σ 1) random variable and X 2 is a Cauchy (μ 2, σ 2), then X 1 + X 2 is a Cauchy (μ ...
A chart showing a uniform distribution. In probability theory and statistics, a collection of random variables is independent and identically distributed (i.i.d., iid, or IID) if each random variable has the same probability distribution as the others and all are mutually independent. [1]
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution , and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters .
In probability theory and statistics, the characteristic function of any real-valued random variable completely defines its probability distribution. If a random variable admits a probability density function , then the characteristic function is the Fourier transform (with sign reversal) of the probability density function.