Search results
Results from the WOW.Com Content Network
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.
It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement. The dimension of absement is length multiplied by time.
At its most basic level, a spacetime diagram is merely a time vs position graph, with the directions of the axes in a usual p-t graph exchanged; that is, the vertical axis refers to temporal and the horizontal axis to spatial coordinate values.
Cran-Merry Orange Refresher . This new Refresher features flavors of orange, cranberry and spices (including notes of cardamom, cinnamon and nutmeg), and is shaken with ice, water and cranberries.
I went on a nine-day trip aboard the Scenic Spirit, a luxury river cruise that holds 68 guests. My 344-square-foot deluxe room had a special area with a glass partition and tons of windows.
In statistical mechanics, the mean squared displacement (MSD, also mean square displacement, average squared displacement, or mean square fluctuation) is a measure of the deviation of the position of a particle with respect to a reference position over time.