Search results
Results from the WOW.Com Content Network
lim inf X n consists of elements of X which belong to X n for all except finitely many n (i.e., for cofinitely many n). That is, x ∈ lim inf X n if and only if there exists some m > 0 such that x ∈ X n for all n > m. Observe that x ∈ lim sup X n if and only if x ∉ lim inf X n c.
Let f 1, f 2, ... denote a sequence of real-valued measurable functions defined on a measure space (S,Σ,μ).If there exists a Lebesgue-integrable function g on S which dominates the sequence in absolute value, meaning that |f n | ≤ g for all natural numbers n, then all f n as well as the limit inferior and the limit superior of the f n are integrable and
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
The article did not place any restrictions on the ordering of X in its definitions of lim sup and lim inf. Without restrictions, these may not exist. I modified the section to acknowledge that they may not exist. I do not know if lim sup and lim inf are generally considered in sets other than complete lattices (in which they are guaranteed to ...
Oscillation of a sequence (shown in blue) is the difference between the limit superior and limit inferior of the sequence. In mathematics, the oscillation of a function or a sequence is a number that quantifies how much that sequence or function varies between its extreme values as it approaches infinity or a point.
This sequence converges uniformly on S to the zero function and the limit, 0, is reached in a finite number of steps: for every x ≥ 0, if n > x, then f n (x) = 0. However, every function f n has integral −1. Contrary to Fatou's lemma, this value is strictly less than the integral of the limit (0).
Then = + +! + +! (again, one must use lim inf because it is not known if t n converges). Now, take the above inequality, let m approach infinity, and put it together with the other inequality to obtain: lim sup n → ∞ t n ≤ e x ≤ lim inf n → ∞ t n {\displaystyle \limsup _{n\to \infty }t_{n}\leq e^{x}\leq \liminf _{n\to \infty }t_{n ...
In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.