enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cut (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Cut_(graph_theory)

    A cut C = (S, T) is a partition of V of a graph G = (V, E) into two subsets S and T. The cut-set of a cut C = (S, T) is the set {(u, v) ∈ E | u ∈ S, v ∈ T} of edges that have one endpoint in S and the other endpoint in T. If s and t are specified vertices of the graph G, then an s – t cut is a cut in which s belongs to the set S and t ...

  3. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.

  4. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    A cut whose cut-set has minimum total weight, possibly restricted to cuts that separate a designated pair of vertices; they are characterized by the max-flow min-cut theorem. minor A graph H is a minor of another graph G if H can be obtained by deleting edges or vertices from G and contracting edges in G.

  5. Minimum cut - Wikipedia

    en.wikipedia.org/wiki/Minimum_cut

    The dotted line in red represents a cut with three crossing edges. The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric.

  6. Biconnected component - Wikipedia

    en.wikipedia.org/wiki/Biconnected_component

    Multi-colored vertices are cut vertices, and thus belong to multiple biconnected components. In graph theory, a biconnected component or block (sometimes known as a 2-connected component) is a maximal biconnected subgraph. Any connected graph decomposes into a tree of biconnected components called the block-cut tree of the graph.

  7. Graph (discrete mathematics) - Wikipedia

    en.wikipedia.org/wiki/Graph_(discrete_mathematics)

    A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).

  8. Menger's theorem - Wikipedia

    en.wikipedia.org/wiki/Menger's_theorem

    The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.

  9. Complete graph - Wikipedia

    en.wikipedia.org/wiki/Complete_graph

    They are maximally connected as the only vertex cut which disconnects the graph is the complete set of vertices. The complement graph of a complete graph is an empty graph. If the edges of a complete graph are each given an orientation, the resulting directed graph is called a tournament. K n can be decomposed into n trees T i such that T i has ...